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Evaluation of Effectiveness of Bioassays and Remediation Strategy  
for Agent Orange Contaminated Soil and Sediments at the  

Former Danang Air Base in Vietnam 
U.S.-Vietnamese Cooperative Research 

 
Vance S. Fong, P.E., U.S. EPA, Quality Assurance Manager 

 
 
Introduction 
 One of the major areas of cooperation signified in the July 2001 and the March 2002 U.S. 
– Vietnam Dioxin Research Agreements is to develop capacity to identify areas with lingering 
high levels of dioxin in Vietnam.  "Hot spots" containing high levels of dioxin in soil have been 
identified and others are presumed to exist but have yet to be located.  These “hot spots” are 
potentially associated with former bases occupied by U.S. forces and with areas defoliated 
during the Vietnam War.   
 
 Both countries expressed support for an environmental survey to identify potential 
populations for health studies and “hot spots” for possible remediation.  The overall goal of this 
collaboration is to advance science for the purpose of reducing human exposure and improving 
public health.  Research is needed to develop approaches for more rapid and less expensive 
screening of dioxin residue levels in soil, sediments, and biological samples which can be 
applied in Vietnam.  These approaches can then be used to more readily locate highly 
contaminated areas, to monitor effectiveness of remediation, and to understand migration of 
dioxin in the natural environment.  Monitoring efforts need to be linked to modeling efforts to 
understand fate and transport of dioxin in the environment.  The overall strategy also includes 
evaluation of innovative and cost-effective approaches to environmental remediation for 
application in Vietnam.   
 
 The environmental agencies of both countries strongly support the need for high quality 
research and capacity building as a means to identify, characterize and mitigate dioxin health, 
and ecological impacts, and bridge knowledge gaps regarding human exposure both the past and 
into the future.  Coordination between health and environmental efforts will be necessary to 
achieve success.  This has been a  research collaboration  among  the Vietnam Ministry of 
Science, Technology and the Environment, Vietnam National Center for Natural Sciences and 
Technologies, U.S. National Institute of Health, U.S. EPA, U.S. Center Disease Control, and the 
State Department. 
 
Progress to Date: Technology Transfer, Research, and Data Development 
 This is an on-going effort and is too soon to predict what the eventual results and benefits 
will be.  Preliminary accomplishments include: 
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I. Trained Vietnamese scientists in sample collection and bioassay analytical techniques. 
II. Planned out pilot “hot spot” assessment using effective site characterization tools. 
III. Built laboratory capacity/expertise in analysis and remediation. 
IV. Collected and analyzed the first set of soil samples from a “hot spots” at the former Danang Air Base. 
Developed a matrix of potentially applicable remediation technologies for further evaluation. 
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A Statistical Perspective on Recent Developments in Chemical Analytical 
Detection and Measurement 

 
Henry D. Kahn 

Statistics and Analytical Support Branch 
Engineering and Analysis Division 
Office of Science and Technology 

Office of Water 
US Environmental Protection Agency 

 
 

This presentation will review recent developments in chemical analytical detection and 
measurement related to ongoing work conducted by EPA’s Office of Water.  The Office 
is currently working to fulfill the requirements of a Court ordered settlement agreement 
to perform an assessment of methodology for determining levels for detection and 
measurement, or quantification, of chemical analytes These levels define important 
characteristics of techniques used to measure chemical analytes and are often 
controversial.  The basic elements of detection and measurement will be reviewed and 
issues addressed in the settlement agreement will be discussed.  The presentation will 
emphasize statistical concepts and perspective on the development and application of  
methodology for determining detection and measurement levels. 
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What is your IQ? 
 

Cynthia Curtis, U.S. EPA and Kevin Bolger, U.S. EPA 
 
 

Information quality (IQ) is an essential building block for making sound environmental 
decisions. Unfortunately, quality assurance information associated with data is often 
overlooked or simply not included with data sets.  What if it was simple to retrieve 
pertinent QA information and its associated data? What if you only had to enter the 
information into a database once?  What if it could be done using an on-line system that 
leads you through a series of simple questions?  During our presentation, we will tour a 
pilot of an on-line system that offers these features and more.  The Region 5 State of 
Environment (R5 SOE)  QA system was developed by U.S. EPA in response to needs by  
regions to develop a  consistent platform on which data and supporting information for 
multi-media analysis can be assessed, documented, and qualified. We will further 
describe how R5 SOE QA works and which areas we expect to enhance in the future. 
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Ozone Data Quality Objective Development 
 

Basil Coutant, Battelle 
 
 

Development of the Data Quality Objectives (DQOs) for the 8-hour ozone standard is 
being completed.  The process currently underway started with an assessment of the 
DQO process initiated in 1997 by EPA’s Office of Air Quality Planning and Standards.  
That assessment identified several issues with the initial DQO development that are 
being addressed in the current effort. 
 
The current DQO development uses the hourly ozone concentrations reported in AIRS 
for the three-year period of 1999-2001.  These data are being analyzed to provide a 
distribution of parameter estimates needed for simulation models and to validate those 
models.  The proposed simulation models are similar to the ones used for the PM2.5 
DQO development and incorporate seasonality, diurnal variability, data incompleteness, 
natural variability, autocorrelation, and measurement error. 
 
The primary goal of this work is the validation of the simulation models and 
establishment of the national distribution of the parameters to be used in the models.  
Various scenarios are presented so that EPA and decision makers can make the final 
choices with respect to the level of uncertainty that is acceptable.  Those choices will 
complete the DQO development process. 

 
 
1.0  INTRODUCTION 
The primary National Ambient Air Quality Standard (NAAQS) for ozone is based on an average 
from three consecutive years of the fourth highest daily value of rolling 8-hour average hourly 
concentrations (see 40CFR50).  The Data Quality Objective (DQO) process for the 
attainment/non-attainment decision of the ozone NAAQS was initiated in the mid-1990s but was 
not completed.  This report discusses the recent progress made and the steps that have been taken 
to complete the DQO process. 
 
The current DQO development is based on a pair of simulation models, one of which is similar 
to the one used for PM2.5 (see U.S. EPA’s DQO Companion, Version 1.0 User’s Guide).  
Namely, they assume that the maximum 8-hour averages follow a long-term sinusoidal pattern 
with random day-to-day deviations from that pattern.  The daily values are also assumed to have 
a consistent multiplicative bias and random measurement imprecision.  The sinusoidal pattern 
and degree (and nature) of random day-to-day scatter about the sinusoidal pattern have been 
estimated from ozone data obtained from AQS.  The second simulation model mimics the hourly 
measurements taken within a day.  Again, a sinusoidal pattern is assumed to mimic the diurnal 
patterns observed in the data.  Together, these are used to study the effect of measurement 
inaccuracy and data incompleteness on the estimate of the 3-year mean fourth highest value and 
the subsequent decision errors. 
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2.0  DISCUSSION 
This section discusses the main issues that are being incorporated into the current framework that 
differ from the previous ozone DQO effort or the PM2.5 DQO development.  The main issues 
with the development of the ozone DQOs are: 
 
 1.  The database used to establish the DQO parameters. 
 2.  The distribution used in the simulations. 
 3.  The inclusion of autocorrelation in the simulations. 
 4.  The establishment of a relationship between the precision and bias of the daily 

aggregate to the actual measurement precision and bias. 
 5.  The use of data incompleteness in the DQO simulations. 
 6.  The use of year-to-year variation in the simulations. 
 
Each of these issues is discussed in the following sections. 
 
 
2.1  The Data 
The database for this effort is an archived collection of hourly ozone concentrations reported in 
AQS for the years 1999, 2000, and 2001 extracted on September 23, 2002, and available at 
http://www.epa.gov/ttn/airs/airsaqs/archived%20data/archivedaqsdata.htm.  This database allows 
the parameters used in developing the DQOs to be estimated from a nationally representative set 
of data.  “Representative” in this case does not just mean representative of the most typical data, 
but additionally the range of conditions that could reasonably be expected from the program.  
Obviously, this would have been difficult to obtain prior to the implementation of a national 
network.  However, even if the DQOs had been completed earlier, it would be appropriate to 
review the assumptions made and the parameter estimates with the current 3-year database. 
 
 
2.2  Choice of Distribution 
For the PM2.5 DQO development, lognormal deviations from the sinusoidal seasonal mean were 
used.  However, the Weibull distribution has been described as better than the lognormal for 
estimating the extremes in the ozone data (Curran and Frank, 1975).  This claim was investigated 
for sites with the greatest day-to-day variability, where the differences between the distributions 
would make the greatest difference. 
 
Figure 1 shows three non-negative distributions each with the same mean and variance and, 
hence, the same coefficient of variation (CV).  The distributions are very similar and have all 
been used to describe pollution concentrations.  For the purpose of describing typical or mean 
behavior, it often makes little difference which is used.  However, for describing extreme 
behavior as required for the ozone DQO, it does make a difference.  Notice that the 98.9th 
percentiles of the three distributions differ by more than 10 percent.  Hence, if we were to 
simulate the data using the mean and CV in the example, the fourth highest values (out of 365) 
would differ by more than 10 percent among these three distributions.  Hence, the simulations 
could introduce a bias. 
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Figure 2 shows quantile-quantile (Q-Q) plots for the lognormal and Wiebull distributions in 
Figure 1.  The lognormal distribution is used as the reference distribution on the horizontal axis 
in Figure 2 since the lognormal distribution was used in the simulations for the previous ozone 
DQO development and in the PM2.5 DQO development.  The plots show a small range of CV 
values, namely 53-60 percent.  The vertical range on the right-hand-side of the plots shows the 
range of the 98.9th percentile for three distributions.  The points indicated by x’s on the far right 
show an adjusted mean 4th highest concentration for the sites in the database that contained at 
least 360 values in each of 1999, 2000, and 2001, and had root-mean-square CV’s between 
53 percent and 60 percent.  The values for the data are all adjusted (by multiplication) so that the 
adjusted data for each site would have a mean of 0.026 ppm, just as the reference distribution 
has.  Notice that the range of 98.9th percentile values for the lognormal and Wiebull distributions 
are disjoint and the data values are either in the range for the Wiebull distribution or below that 
range.  This does not necessarily indicate that the Wiebull distribution is the more appropriate 
distribution, since the data (more specifically the CV’s) have not been adjusted for seasonality.  
However, it does show that there is a significant difference between the distributions in a range 
of interest. 
 
Given the magnitude of this potential bias, the current DQO development is using the Wiebull 
distribution to simulate the daily maximum concentrations.  This choice should regularly be 
reviewed. 
 

0 0.02 0.04 0.06 0.08 0.1
ppm

Three non-negative distributions with the same mean (0.026 ppm) and a CV of 60%

Lognormal 98.9th percentile = 0.08 ppm  
  
Gamma 98.9th percentile = 0.074 ppm
 
Weibull 98.9th percentile = 0.071 ppm 

 
 

Figure 1.  Three non-negative distributions with the same mean (0.026 ppm) and 
Coefficient of Variation (60 percent). 
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Figure 2.  Q-Q plot of the example distributions and the 98.9th percentile, 
3-year mean fourth highest values from 12 sites with CV’s between 53 and 
60 percent adjusted to have the same mean as the reference distribution. 

 
 
2.3  Autocorrelation 
Autocorrelation is a tendency of successive measurements to be similar.  This property of the 
data is an assumption often used in predicting high ozone days.  Generally, autocorrelation can 
occur for a wide variety of physical properties of a measurement process.  For ozone, the primary 
cause would most likely be that the ozone measured at any given time has been produced over a 
much longer time interval than the sampling intervals.  As a result, the value from one day does 
have some predictive value for estimating the following day’s maximum 8-hour average 
concentration.  Of course, predictive models should include other factors, such as meteorological 
factors and/or day of the week effects.  It was felt essential to include this property as an option 
in the simulations.  However, it may turn out that the most conservative estimate of the 
autocorrelation after correcting for seasonality is 0.  Also, since the correlation may be a function 
of concentration level, it may be appropriate to estimate the autocorrelation from a restricted data 
set. 
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2.4  Translation of 8-hour Daily Maximum Precision and Bias into Measurement Precision 
and Bias 
The precision and bias of the maximum 8-hour average is not the same as the precision and bias 
of the individual measurements.  Assuming independence of the measurement errors and no 
diurnal pattern, an 8-hour average should be more precise than the individual hourly 
measurements by a factor of 8  or 2.83.  However, the maximum 8-hour average is based on 
the maximum of all the 8-hour averages and virtually all areas have a diurnal pattern, so this is 
an over simplification.  Hence, a secondary simulation process is being used to translate the 
desired levels of precision and bias for the daily maximums to the precision and bias 
requirements of the hourly measurements. 
 
 
2.5  Data Completeness 
Data incompleteness is incorporated in the model because data completeness has a strong effect 
on the ability to accurately estimate the upper percentiles of a distribution.  (This can be 
observed with the PM2.5 DQO tool.)  While some data incompleteness should be included in the 
simulations used to develop the DQOs, the current data show that most sites are much more 
complete than the 75 percent required by CFR.  Hence, it may be appropriate to use a data 
completeness that is representative of what is currently being achieved.  Otherwise, the resulting 
DQOs may be unnecessarily restrictive. 
 
Data incompleteness is also being incorporated into the within-day simulations.  A small amount 
of missing data at the hourly level is fairly common.  The simulations have shown that 
incompleteness on the hourly level can introduce a small positive bias in the maximum 8-hour 
mean for a day. 
 
 
2.6  Year-to-year variation 
Ozone concentrations are known to be affected by meteorological conditions.  Hence, a small 
amount of year-to-year variation has been incorporated into the model.  Figure 3 shows the 
distribution of the annual fourth highest values for the years 1999, 2000, and 2001 from sites 
with data in each of the three years.  Note that the median for 1999 is approximately the 75th 
percentile for the other two years.  The amount of variability used in the simulations is based on 
estimating the year-to-year effect on a site level and then using approximately the 90th percentile 
of those values, which is about a 6 percent coefficient of variation in the year-to-year means. 
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Figure 3.  Box plots of the annual fourth highest values from sites 
with data in each of 1999, 2000, and 2001. 

 
 
3.0  NEXT STEPS 
The simulation model has been developed and the parameters estimated for sites with data from 
the 1999 though 2001 in AQS.  From the site estimates, a range of values will be chosen to 
reflect the more extreme conditions across the nation.  Finally, specific scenarios will be chosen 
to illustrate how different levels of precision and bias affect the attainment/non-attainment 
decision.  Decision makers can then use these to set the precision and bias standards for ozone 
and complete the DQO process. 
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Predicting Maximum Air Pollution Concentrations,” Proceedings of the 68th Annual Meeting of 
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U.S. EPA (2000).  “Guidance for the Data Quality Objectives Process (EPA QA/G-4).”  Report 
No. EPA/600/R-96/055, August. 
 
U.S. EPA (2002).  “DQO Companion, Version 1.0 User’s Guide,” written by Battelle for 
U.S. EPA under Contract No. 68-D-98-030, Work Assignment 5-07. 
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PMCoarse Data Quality Objective Tool Development 
 

Basil Coutant and Chris Holloman, Battelle 
 
 

PMcoarse is usually measured by taking the difference between a PM10 measurement and 
a co-located PM2.5 measurement.  Hence, there are two sources of measurement error.  
A software tool is being developed to guide the Data Quality Objective (DQO) process 
for the forthcoming PMcoarse National Ambient Air Quality Standard (NAAQS).  The tool 
may also be used in the decision process for establishing the percentile used for the daily 
NAAQS if potential data quality issues are considered. 
 
Like the software developed for PM2.5, this software will establish decision performance 
curves from a simulation model.  In fact, since the measurements rely on a PM2.5 
measurement, the PM2.5 simulation model will be directly incorporated in the PMcoarse 
simulation model.  The added complexity of the measurement process is reflected in the 
new model.  For example, two sets of ambient characteristic need to be entered; one for 
the PM10 ambient characteristics and one for the PM2.5 ambient characteristics.  
Likewise, measurement characteristics of both cut-points are needed as inputs to the 
software. 
 
Concurrently, with the software development, there is an assessment of PMcoarse 
measurements to estimate the likely ranges of the input parameters.  These will be 
presented along with a demonstration of a beta version of the software. 
 

 
 
1.0  INTRODUCTION 
The National Ambient Air Quality Standards (NAAQS) for PMcoarse are expected to be similar to 
the standard for PM2.5 with one standard based on the mean of three consecutive annual means 
and one based on the mean of three consecutive annual observed percentiles.  However, the 
specific percentile has not been determined yet.  To aid in the development of the standards and 
the Data Quality Objectives (DQOs), a simulation tool is being developed (see U.S. EPA’s DQO 
Companion, Version 1.0 User’s Guide).  The tool simulates both the true PM2.5 and PM10 
concentrations and the corresponding measured values.  Input parameters to the tool control 
aspects of the simulated ambient conditions such as the degree of seasonality for the two 
fractions, aspects of simulated measurement quality such as the sampling completeness, and 
aspects of the simulated decision process such as which percentile to use as the daily standard. 
 
Concurrently, with the tool development, a nationwide evaluation of PMcoarse data has been 
conducted.  AQS data were used to find site-specific estimations of the parameters used in the 
simulation models.  The purpose is to understand the range of conditions that must be considered 
in the national level DQO development, not to develop site-specific DQOs. 
 
 
2.0  SIMULATION PARAMETERS 
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This section describes each of the input parameters.  If the input parameter describes a 
characteristic of the ambient conditions, then the subsection also includes a method for 
estimating the parameter from local measurements as well as selected quantiles from using the 
described method to estimate the parameter at 502 sites with co-located PM10 and PM2.5 in the 
AQS database for the years 1999 through 2001. 
 

 
Figure 1.  Distribution of the Sites Used to Estimate the Simulation Parameters 

 
 
2.1  Ratio 
The ratio parameter is a measure of the degree of seasonality in the data.  It is the ratio of the 
high point to the low point on the sine curve that describes the long-term average behavior of 
PM.  This ratio must be estimated separately for the PM2.5 and PMcoarse series.  With at least a 
year of data, the ratio is estimated by calculating the means for each month and dividing the 
highest monthly mean by the lowest monthly mean.  For sites with more than 1 year of data, the 
monthly averages are based on all of the data for the given month even though they may come 
from different years.  Table 1 shows quantiles of the estimated ratio parameter for PM2.5 and 
PMcoarse across several sites in the United States. 
 

Table 1.  Seasonality Ratio Quantiles 
 

Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5 
PM2.5 ratio 1.46 1.63 1.77 1.88 2.02 2.14 2.28 2.58 3.03 4.01 5.72 
PMcoarse ratio 1.68 2.05 2.32 2.73 3.24 3.82 4.42 5.54 8.01 14.34 52.52



EPA 22nd Annual National Conference on Managing Environmental Quality Systems                                                                                              3 

 
 
2.2  Population Coefficient of Variation 
This parameter measures the amount of random, day-to-day movement of the true concentration 
about the average sine curve.  The population coefficient of variation (CV) parameter must be 
estimated separately for the PM2.5 and PMcoarse series.  This parameter is a bit harder to estimate 
than the ratio parameter.  The following procedure does a reasonable job of estimating the 
parameter.  Starting with every 6th day measurements (deleting, if necessary), the natural log of 
each concentration is taken.  Next, a new sequence of numbers is generated with the differences 
of successive pairs in the sequence of the logs.  Every other term in this sequence is removed so 
that each term is independent of the others.  Let S6 = the standard deviation of this set of 
numbers.  An estimate for the population CV is ( )( )126exp 2 −S .  Table 2 shows quantiles of 
the estimated population CV parameter for both PM2.5 and PMcoarse across several sites in the 
United States. 
 

Table 2.  Population CV Quantiles 
 

Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5
PM2.5 CV 0.35 0.41 0.45 0.48 0.51 0.53 0.56 0.6 0.64 0.69 0.8 
PMcoarse CV 0.4 0.49 0.56 0.61 0.66 0.71 0.76 0.84 0.93 1.08 1.39

 
 
2.3  Autocorrelation 
Another parameter describing the natural variability of the true concentrations is autocorrelation.  
Like the preceding variables, the autocorrelation must be estimated separately for the PM2.5 and 
PMcoarse series.  This is a measurement of the similarity between successive days.  Estimating 
autocorrelation is even harder than estimating the population CV.  It is only estimated from daily 
measurements.  Otherwise, 0 can be used as a conservative case.  For the sites that did have daily 
measurements, let S6 be the standard deviation computed as in the section on population CV 
based on differences of the logs from every 6th day measurements.  Let S1 be the corresponding 
standard deviation calculated using differences of logs from daily measurements.  If S6 > S1, the 
autocorrelation is estimated by ( ) 222 616 SSS − , otherwise it is estimated by 0.  (This estimation 
tends to slightly overestimate the truth.  Since it is better to underestimate this parameter (to 
make the results more conservative), future estimates may be multiplied by 0.85.  Note that the 
usual autocorrelation estimate, correlation estimate between successive values, does not work 
when there is seasonality.)  Table 3 shows quantiles of the estimated autocorrelation for both 
PM2.5 and PMcoarse across the 65 sites in the database with daily measurements. 
 

Table 3.  Autocorrelation Quantiles 
 
Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5
PM2.5 autocorrelation 0 0.05 0.21 0.3 0.36 0.38 0.41 0.44 0.51 0.58 0.8 
PMcoarse autocorrelation 0 0.11 0.16 0.19 0.24 0.27 0.38 0.4 0.43 0.54 0.69
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2.4  PMcoarse to PM2.5 Ratio 
This parameter is used for scaling.  Its estimation is very simple.  Let M1 be the average of all of 
the PMcoarse values over the full time period available.  Let M2 be the average for the 
corresponding PM2.5 data.  Then, k is estimated with M1/M2.  Table 4 shows quantiles of the 
estimated value of this multiplicative factor across the sites in the database. 
 

Table 4.  PMcoarse to PM2.5 Ratio Quantiles 
 

Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5
    k 0.28 0.37 0.46 0.56 0.72 0.87 1.04 1.29 1.6 2.22 3.29

 
 
2.5  Offset Between PM2.5 and PMcoarse Cycles 
This parameter controls the difference in time between the peak of PM2.5 in a year and the peak 
of PMcoarse (and, by implication, PM10) in a year.  The value of the parameter is in months.  In 
order to estimate this parameter, monthly means are calculated as in the estimate for the 
seasonality ratio parameter.  The offset parameter estimate is the number of the month with the 
highest average PMcoarse level minus the number of the month with the highest average PM2.5 
level.  Since the sine wave is cyclical, adding or subtracting 12 from the estimate does not 
change the sine wave produced.  For consistency, all of the estimates were converted to 
equivalent values between -5 and 6 in Figure 2. 
 

 

Figure 2:  Bar Chart of the Offset Parameter. 
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2.6  Correlation between PM2.5 and PMcoarse 
This parameter estimates the correlation between the two series.  The calculation of this 
correlation can be affected by autocorrelation and seasonality in the series, so the calculation is 
quite complex.  First, consider only the PM2.5 series.  Starting with every 6th day measurements 
(deleting, if necessary), the natural log of each concentration is taken.  Next, a new sequence of 
numbers is generated by the differences of successive pairs in the sequence of the logs.  Every 
other term is then removed from the sequence.  This procedure is repeated with the PMcoarse 
concentration sequence.  Then, the corresponding elements from these two sequences are added 
together to obtain a single sequence.  Let SS be the standard deviation of this set of numbers.  
Next, obtain the standard deviation values called S6 in the population CV section for the PM2.5 
and PMcoarse sequences.  Call these S625 and S6coarse for the PM2.5 and PMcoarse sequences, 
respectively.  The correlation can be estimated by )SS*()]SS(SS[ coarsecoarse

2
25

22
25

22 66266 ×+− .  
(The usual correlation estimate between individual PM measurements from the two series will 
overestimate correlation in the presence of autocorrelation and seasonality.)  Table 5 shows 
quantiles of the estimated value of the autocorrelation across the sites in the database. 
 

Table 5.  PMcoarse to PM2.5 Correlation Quantiles 
 

Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5
correlation -0.23 -0.05 0.06 0.12 0.19 0.25 0.31 0.39 0.46 0.56 0.69

 
 
2.7  Type I and Type II Errors 
Type I and Type II errors describe the probability of making the wrong decision under a 
specified set of conditions.  Type I error is the probability of observing a (three-year aggregate) 
value above the standard when the true ambient level (free from measurement error and bias) is 
below the standard.  In the tool, this parameter is required to be at least 1 percent; otherwise 
more simulations are needed to get robust results.  (See Step 6 of U.S. EPA’s QA/G-4 for 
additional guidance.) 
 
Type II error is the probability of making the opposite mistake:  observing a value below the 
action limit when the true ambient level (free from measurement error and bias) is above the 
action limit.  Since the curves show the probability of observing a value above the action limit, 
the value of 1 minus the Type II error is shown at the top of the graphs.  As with the Type I error, 
this parameter is required to be at least 1 percent; otherwise more simulations are needed to get 
robust results.  (See Step 6 of U.S. EPA’s QA/G-4 for additional guidance.) 
 
2.8  Standards 
Both a daily standard and an annual standard can be entered for PMcoarse.  The DQO tool is 
intended to help answer questions of the type, “What is the probability of the observed 98th 
percentile of PMcoarse levels exceeding 40 µg/m3 when the true 98th percentile of PMcoarse levels 
is 37 µg/m3?”  In this question, 40 µg/m3 is the daily standard and 0.98 is the percentile for the 
daily standard. 
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2.9  Sampling Frequency  
The sampling frequency is entered in terms of period between sampling events.  The value of m 
must be an integer from 1 to 12 and denotes the number of days between successive samples.  
The most common values are 1, 3, 6, and 12.  A value of m equal to 6 corresponds to 
approximately 15 sampling days each quarter. 
 
 
2.10  Completeness 
Completeness is the minimum acceptable percentage of the data that is intended to be collected.  
Completeness is included in the DQO tool to mimic random occurrences of data loss, such as a 
power outage on a scheduled sampling day.  The criterion is applied quarterly.  Thus, if the 
completeness is set to 0.75, the DQO tool removes 75 percent of your data from each quarter of 
each year.  However, the completeness requirements are on the PM2.5 and the PM10 
measurements.  Hence, there is the possibility (in fact, it is almost always the case in the 
simulations) that the percent of the PMcoarse measurements used is less than 75 percent since 
different days may be missing in the two sets of measurements. 
 
 
2.11  Bias 
The bias input is the maximum allowable absolute measurement bias as a proportion of the truth 
for PM2.5 and PM10.  Bias is a consistent measurement error — a tendency to always either 
overestimate or underestimate the truth.  The DQO tool accepts only positive values for 
quantifying bias.  Both positive and negative biases are simulated. 
 
 
2.12  Measurement Coefficient of Variation 
Measurement CV quantifies the size of the measurement error.  It is expressed as a proportion of 
truth for PM2.5 and PM10.  The random component to the measurement error is assumed to follow 
a normal distribution with a mean of 0 and a standard deviation that is proportional to truth (for 
the given day). 
 
 
3.0  References 
U.S. EPA (2000).  “Guidance for the Data Quality Objectives Process (EPA QA/G-4).”  Report 
No. EPA/600/R-96/055, August. 
 
U.S. EPA (2002).  “DQO Companion, Version 1.0 User’s Guide,” written by Battelle for 
U.S. EPA under Contract No. 68-D-98-030, Work Assignment 5-07. 
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The QA Strategy Workgroup’s Validation Templates 
 

Tom Parsons, South Coast Air Quality Management District 
 
 

The National QA Working Group has been given the task of updating and clarifying the 
Quality Assurance requirements for ambient air monitoring found in 40 CFR 58 
Appendix A.  The approach the working group has taken is to develop comprehensive 
data validation templates for all the criteria pollutants similar to the template released 
for the PM2.5 program.  This presentation will cover the rationale behind and the 
organization of the templates, the current version of the template for each pollutant, and 
then provide an opportunity for members of the audience to make suggestions for 
improvements to the templates. 
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Driving Excellence - Quality Methods at the National Vehicle and Fuels 
Emissions Laboratory 

 
Thomas Schrodt 

Manager, Compliance and Development Testing 
USEPA - National Vehicle and Fuels Emissions Laboratory 

 
 

Americans love their vehicles and drive more and more each year.  Creating change that 
lessens the environmental impact of this huge sector is a high stakes endeavor from both 
an environmental and economic perspective.  Information quality is vital to this effort.  A 
multi-faceted approach is taken for Quality Control of vehicle testing operations at the 
EPA National Vehicle and Fuels Emissions Laboratory, in Ann Arbor, Michigan.  Major 
components of the program include Process Development and Review, Standard 
Operating Procedures, Calibration Assurance, Change Management, Test Packet 
Audits, System Audits, Laboratory Correlation, Diagnostic and Statistical Tools, and 
Continuous Improvement.  The inherent test to test variability of vehicles themselves 
present specific challenges and require special consideration  to stratify sources of 
variation in the measurement system.  Quality expertise at the laboratory is leveraged 
through various technical exchange and standards committees, Cooperative Research 
and Development Agreement activities and external auditing.  Future challenges are 
driven by increasing regulatory stringency and complexity. 

 
 
Background 
 
The U.S. Environmental Protection Agency's (EPA) Office of Transportation and Air Quality's 
(OTAQ) mission is to reconcile the transportation sector with the environment by advancing 
clean fuels and technology, and working to promote more liveable communities.  OTAQ is 
responsible for carrying out laws to control air pollution from motor vehicles, engines, and their 
fuels. Mobile sources include: cars and light trucks, large trucks and buses, farm and 
construction equipment, lawn and garden equipment, marine engines, aircraft, and locomotives.  
 
EPA's motor vehicle emissions control program was established in 1971. OTAQ staff is divided 
between EPA's headquarters in Washington, D.C., and the National Vehicle and Fuel Emissions 
Laboratory (NVFEL) in Ann Arbor, Michigan, near the headquarters of domestic automobile 
manufacturers.  
 
There are about 400 employees in OTAQ. Staff expertise spans a variety of technical and public 
policy fields including auto mechanics, engineering, chemistry, economics, natural resources 
management, and law. OTAQ develops national standards for emissions, evaluates emission 
control technology, tests vehicles, engines, and fuels, and determines compliance with federal 
emission and fuel economy standards. We also develop fuel standards, guidance for state 
inspection and maintenance programs, and market and transportation incentive programs.  
 
The early goals of OTAQ centered around working with industry to reduce emissions from 
individual automobiles. The approach achieved dramatic success-compared to an uncontrolled 
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passenger car of 1970, an average car on the road today emits 60 to 90 percent less pollution 
over its lifetime.  However, the amount of driving in this country has more than doubled since 
then, so transportation still accounts for a large part of national air pollution.  About half the U.S. 
population live in areas where pollution levels exceed federal air quality standards.  
 
The National Vehicle and Fuel Emissions Laboratory in Ann Arbor, Michigan had it’s 
beginnings before the formation of the Environmental Protection Agency.  During this 30+ year 
period, creativity innovation and quality have been hallmarks of the many test programs 
conducted in the areas of compliance monitoring and enforcement, regulatory development, 
energy efficiency, technology demonstration and the assessment of innovative approaches to 
motor vehicle emissions measurement and control.  The work of the laboratory has been key to 
the enormous strides made to clean the air through technological developments to motor vehicles 
and their fuels.  The purpose of this paper is to describe the work of the laboratory through 
presentation of several key programs along with various levels of Quality Assurance and Quality 
Control that ensure the veracity and effectiveness of these programs. 
 
The laboratory facility consists of about 160,000 square feet of office space and laboratory 
functions including chassis and engine dynamometers and a comprehensive fuels laboratory.  
Increased regulatory stringency and the emerging technological sophistication of engines and 
vehicle systems have placed increasing demands on the science of emissions and performance 
measurement.  
 
Historically the emphasis of testing has been light duty vehicles, but in the last ten years engine-
based programs have grown extensively and now comprise a significant portion of the testing 
effort.  This shift in emphasis is both the product of a wider regulatory efforts and increased 
focus on increasing the efficiency of the internal combustion engine to help to control the 
emission of greenhouse gases.  Engine testing ranges from 1 horsepower “weed whacker” 
engines to heavy duty diesel engines of greater than 300 horsepower, covering both “on-
highway” applications and an expanding class of “non-road” applications. 
 
One of the longest standing programs, and historically a central emphasis of the laboratory,  is 
the pre-production certification of new vehicles for compliance with emissions and fuel economy 
standards.  This process is largely a self certification process done by the auto manufacturers, but 
the laboratory plays an important role by conducting confirmatory testing of a random selection 
of certification vehicles.  This role is essential, due the lack of a single reference standard for the 
measurement of automotive emissions.  As part of this program the laboratory tests prototype 
vehicles to assure that they meet the appropriate regulatory limits and that the comparison of 
EPA and manufacturer results indicate no long term bias.  As such the laboratory serves as the 
national performance standard for automotive emissions and fuel economy testing. 
 
A program which is closely related, and actually reinforces the pre-production  certification 
program, is the surveillance testing of in-use vehicles.  Automobile manufacturers are 
responsible for the emissions performance of their vehicle for the full useful life of the vehicle or 
100,000 miles.  At NVFEL, random selections of available vehicles within targeted engine 
families are made and these vehicles are tested to ascertain emission levels.  If these vehicles 
shows evidence of pattern-type failure, a larger selection of this engine family is made to confirm 
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the results.  In a typical year this testing inspires the voluntary recall of about 1 million vehicles.  
It is very rare that EPA has to take any sort of legal action to motivate these recalls, because of 
the known quality of our program and laboratory data. 
 
NVFEL also conducts various types of testing of in-use vehicles to help build computer models 
of emissions performance of vehicle populations to assist states and local governments in making 
choices as to the most effective and efficient approaches to reducing air pollution in their 
localities. 
 
EPA-OTAQ is in the midst of developing and implementing several new regulations that reflect 
the great strides being made to reduce emissions from internal combustion engines.  The passage 
of these regulations has relied heavily on the demonstration of new technology at NVFEL.  
When EPA was sued regarding the feasibility of 2007 diesel engine standards, the court relied 
heavily on NVFEL test results in upholding the regulation.  Similarly when the EPA developed 
the Tier 2 regulation, which is dramatically reducing emissions from light and medium duty 
vehicles, it was the development and demonstration of successful control strategies at NVFEL 
which convinced automobile manufacturers of the feasability and effectiveness of the controls.  
In the heavy duty arena, incredible reductions are being made in the control of both particulate 
matter and oxides of nitrogen from diesel engines through NVFEL technology demonstrations. 
 
Leveraging it’s role as the performance standard for automotive emissions and fuel economy 
testing, EPA is also at the forefront of cooperative activities with industry aimed at 
improvements to measurement processes through both informal and formal mechanisms such as 
Cooperative Research and Development Agreements (CRADAs) and formal standards 
committees such as those sponsored by the Society of Automotive Engineers. 
 
 
NVFEL Quality Methodologies for  Laboratory Operations 
 
Quality tools for the management and continuous improvement of NVFEL laboratory operations 
have been developed and refined over many years.  Some of these tools are very similar to those 
found in most laboratory environments, others have been shaped by some of the more unique 
conditions present in the testing of automotive emissions and fuel economy.  The following is a 
review of some of the major on-going elements that form a basis of our laboratory quality control 
activities. 
 
Process Development, Review, and Standard Operating Procedures 
 
New measurement processes and systems undergo review by a team of laboratory experts to 
assure that the new processes will achieve the desired results.  There are many significant and 
specific requirements in associated regulations that form the basis for part of this review.  A 
significant, ultimate outcome of this review is to translate regulations into detailed procedures 
and data forms.  The resulting procedures are not only used internally, they are available to 
anyone on the internet at http://www.epa.gov/otaq/testproc.htm., and are used by various 
automotive emissions testing organizations as a basis for their own forms, procedures and quality 
methods. 
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Calibration Assurance  
 
Calibration, and care to maintain traceability, are major issues for most laboratories.  To assure a 
consistent approach across all laboratory operations and to track routine activities required to 
assure proper equipment calibration, we developed our own equipment tracking system.  This 
system automatically generates work orders for calibration efforts based on pre-determined 
schedules and needs and provides a management reporting system for calibration and 
maintenance.  This ensures both the timely calibration of equipment, and the maintenance of 
traceability.   This system has proven itself so valuable that it has been successfully adapted to 
track test equipment preventative maintenance, and inspection and maintenance of about 100 
safety-related items in the lab as well. 
 
Change Management 
 
To manage change and systematize the results of continuous improvement in the laboratory, 
NVFEL  developed and implemented a system known as the Equipment and Procedure Change 
Notice system (EPCN) which ties directly in to our new process review efforts.  This system 
implements and guides various changes.  For example the EPCN for a new analytical system will 
spell out all the necessary actions needed to implement that new system.  All the various testing, 
process development efforts and quality control efforts related to the new site are driven by the 
EPCN.  This process is administered by our Quality Control Staff. 
 
Test Packet Audits 
 
On a random basis, all official test result documents are audited to ensure that proper procedures 
and forms have been used for a particular kind of test.  These audits are highly structured to 
cover all CFR and internal requirements.  These periodic audits catch any emerging trends, 
which could indicate that systematic mistakes are made and also serve as a driver for continuous 
improvement efforts.  Additionally all test packets for testing done to confirm suspected in-use 
vehicle pattern failures are audited to ensure that all official documentation is bullet proof. 
 
System Audits 
 
System audits are targeted to take an in-depth look at specific areas such as qualification of new 
measurement systems or the complete review of all processes involved in recall testing.  External 
audits and any resulting resolution activities are included in this category.  Historically the 
laboratory portion of the organization has been judged to have a robust quality system that has 
formed an underpinning of the work of the other divisions within OTAQ. 
 
Laboratory Correlation Activities 
 
Two conditions are present in automotive emissions testing that make the use of structured 
correlation programs vital to an on-going assessment of measurement quality.  First since the 
measurement is of a complex operating system, an automobile, it is very difficult to segregate 
measurement variability from the variability of the item being tested.  Second since there is a 
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highly complex interaction of the measurement system and the item being measured, no single 
physical standard exists for the outcome of the test.  It is the combination of these factors that 
makes the performance-standard role of NVFEL so important. 
 
To help carry out the role of performance standard, the laboratory relies on three levels of 
correlation testing.  At the first level the laboratory uses a highly developed, statistically based 
program of intra-laboratory correlation testing using a specially selected and instrumented 
vehicle.  This vehicle is run weekly on all active chassis dynamometers to look for immediate 
offsets from normal results, trends or other unusual changes.  This is a very important aspect of 
the laboratory’s system of diagnostic and quality control system because it exercises all 
components of the measurement system.   
 
The laboratory also continuously monitors the correlation of specific vehicle or engine test 
results with other comparable facilities.  This is primary done through two mechanisms, “Paired 
Data” and structured inter-laboratory correlation programs.  
 
Paired Data compares EPA confirmation test results against comparable tests generated by the 
manufacturer with the same vehicle. Offsets and trends are monitored, and the manufacturers are 
subject to increased levels of confirmatory testing of all their certification vehicles if their data 
are persistently different.  This process also assures EPA that our measurement systems are 
functioning properly through continuous comparison with a sizeable population of laboratories. 
 
Structured inter-laboratory correlation testing uses dedicated vehicles or engines to compare 
results between EPA and other laboratories, in a manner which is structured to identify sources 
and magnitudes of variation.  This testing is particularly important for new or modified test 
procedures and for the more stringent requirements in recent EPA regulations.  Wherever 
possible, EPA strives to participate with groups of manufacturers rather than individual entities 
to improve the quality and efficiency of the program.  This program also serves as a back drop to 
a whole range of cooperative efforts aimed at exchange of information and continuous 
improvement of measurement processes. 
 
Diagnostic and Statistical Tools  
 
Regulatory requirements, calibration requirements, documentation, and procedures are critical to 
the quality and legality of certain kinds of testing, but they are not always sufficient or efficient 
in terms of achieving test quality.   NVFEL performs specialized diagnostic tests which can be 
run more frequently and efficiently than calibrations and which exercise entire parts of the test 
system thus checking equipment, calibration, and operation in one pass.  These tests are 
performed, and assessed regularly by Quality Control staff and a variety of engineers and 
technicians.  These tests provide confidence in the readiness of equipment, act as an early 
warning signal and halt testing if the results are not within expectations, and provide a basis for 
adjusting calibration intervals and requirements if that is appropriate.  To facilitate the analysis 
of diagnostic test results a variety of statistical tests and methods are used including Analysis of 
Variance and control charting. 
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Continuous Improvement and Future Challenges  
 
Quality of organizational outcomes is not static.  There is no status quo.  The organization is 
either improving the quality of it’s outcomes or, things are getting worse.  Efforts to make things 
better at NVFEL center both on continuous improvement of existing processes and products, and 
applying new approaches to meet the challenges of measuring the lower emissions that we have 
helped to make possible.  Some examples of improvement projects now underway are: 
 
• Gaining efficiency and effectiveness by bringing together common or similar elements of 

quality, safety and environmental management systems  
• Improving program and project planning to maximize outcome success 
• Management of gas analyzer calibration and maintenance of gas standards at very low 

levels 
• Improved emission sampling systems and processes 
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Quality Assurance or Quality Assistance? 
 

Louis Blume, U.S. Environmental Protection Agency, Great Lakes National Program Office, 77 West 
Jackson Boulevard, Chicago, Illinois 60604 and  Judy Schofield, DynCorp, Science & Engineering 

Group, 6101 Stevenson  Avenue, Alexandria, VA 22304 
 
 

Too often researchers or decision makers are asked to develop a Quality Management 
Plan and believe that the process of doing this is just another requirement to “get the 
money” or to make a bureaucrat happy.   These feelings typically are driven by past 
experiences of working with quality documentation or quality managers that were 
inflexible and rigid in their interpretation of requirements with the hopes of 
guaranteeing or assuring success in a project, similar to an insurance policy or a 
guarantee. 
 
The authors believe that the Agency’s current Quality System developed within the 
constraints of the ISO 9000:2000 and ISO 9001: Quality Management Systems-
Requirements provides for a time saving cost effective planning and implementation 
process that adds value to the decisions or questions being addressed. Further the 
Quality staff employed within a successful organization provide a critical assistance role 
to the researcher or environmental manager. As an organization matures in applying 
these successful quality systems in a flexible manner that focuses on assistance, the 
historic polarization between the client and the quality assistors is greatly reduced.  This 
promotes continued interaction between the client and quality assistors well beyond the 
initial award phase of the project to the reporting, assessment, and peer review phases.  
This continued interaction helps in assuring that results are consistent with the 
requirements of OMB’s new Information Quality Guidelines. 
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An Intra-active Web Based  Research Plan/Quality Assurance Plan 
 

Allan R. Batterman, Quality Assurance Manager, NHEERL, MED 
 
 

A web based Research Plan/Quality Assurance Project Plan (RP/QAPP) document is 
interactively linked to documentation that asks pertinent questions and gives suggested 
examples and formats,  to assist Research Scientists in developing a RP/QAPP of correct 
detail and format to facilitate rapid approval so they can begin their research 
unimpeded. 
 
This documentation is listed on the MED QA Webpage;  the document will be 
demonstrated in this presentation. 

 
 
Introduction 
 
At the Mid-Continent Ecology Division, the research staff has always struggled with the writing 
of the QAPP, primarily because several parts of the separate QAPP are duplicative of the 
Research Plan and the specific information being asked for in the QAPP is somewhat foreign to 
the researcher.  Historically we have allowed researchers to simply reference in the QAPP that 
section of the Research Plan, i.e. “Experimental Design,” however this has meant that the 
reviewers need to read both documents throughly to get a full comprehension of the project.  
This is a step wasteful of reviewer’s time.  Over the last several years, I have tried various 
processes to limit the revisions required to get the necessary information and detail into the 
QAPP.  The best method seemed to be combining the two documents and providing guidance 
directly, which is relatively easy to accomplish, with Hyper Links to gain access to Guidance 
Documentation (G Series and others) and Frequently Asked Questions (FAQs).  During this 
presentation this package will be explained and demonstrated. 
 
Background 
 
ORD has incorporated into its research program the various Research Strategy Documents, 
which explain the basic ORD research program areas.  The Research Scientist is then required to 
develop the Research Plan/Quality Assurance Program Plan that will cover their work.  At MED, 
we have found that often RP and QAPP need to be revised several times to assure inclusion of all 
required materials.  By combining the RP and QAPP into one document we have lessened the 
duplication of materials.  Then, by Hyper Linking guidance and FAQs to the various associated 
sections, the researcher can see exactly what is to be discussed and considered as they write 
those sections.   The reference materials and FAQs are easily available, at a click of a computer 
mouse, while writing in the pre- formatted document.  The document is then programmed in 
such a manner that these links disappear when it is saved.   To accomplish this, a complete 
understanding of the process was required, as well as a thorough understanding of the guidance 
and aids that are available to assist the writer.  This document is constantly modified as new and 
revised documentation is continually being developed.  The RP/QAPP also provides examples of 
accepted packages by QA Category Level to show how others address the concerns.  These 
examples are provided in an edited manner that does not simply provide the writer with a boiler 
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plate to incorporate. 
 
This document is available on the MED Intranet Web page under the Research Plan button and is 
accessible from the NHEERL QA Intranet Page at the MED Link. 
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Planning for Quality in EPA’s Next Generation Mobile Source  
Emissions Model (MOVES) 

 
Chad Bailey, Dave Brzezinski, Mitch Cumberworth,  
Constance Hart, John Koupal, and Harvey Michaels 
U.S. EPA Office of Transportation and Air Quality 

 
 
Introduction 
 The Clean Air Act requires EPA to develop and regularly update emission factors for all 
emission sources. Pursuant to this charge, EPA’s Office of Transportation and Air Quality 
(OTAQ) has developed a number of emission and emission factor estimation tools for mobile 
sources, including MOBILE (for highway vehicles) and NONROAD (for off-road mobile source 
pollutants). EPA is proposing to update these tools with the Multi-Scale Motor Vehicle and 
Equipment Emission System (MOVES), which is intended to include and improve upon the 
capability of these tools and, eventually, to replace them with a single, comprehensive modeling 
system. 
 The National Research Council (NRC) published a thorough review of EPA’s mobile 
source modeling program in 2000 (NRC, 2000).i  The NRC provided several recommendations 
for improving EPA’s mobile source modeling tools, including (a) the development of a modeling 
system more capable of supporting smaller-scale analyses; (b) improved characterization of 
emissions from high-emitting vehicles, heavy-duty vehicles, and off-road sources; (c) improved 
characterization of particulate matter and toxic emissions; (d) improved model evaluation and 
uncertainty assessments; and (e) a long-term planning effort coordinated with other 
governmental entities engaged in emissions modeling. 
 A particular focus of the NRC report was the need to provide emission factors and tools 
that will allow the estimation of emissions at finer analysis scales. Historically, EPA’s mobile 
source emission estimation tools and underlying emission factors have been focused on the 
estimation of mobile source emissions based on average operating characteristics over broad 
geographical areas. Examples of this scale of analysis are the development of SIP inventories for 
urban nonattainment areas and the estimation of nationwide emissions to assess overall trends.   
 In recent years, however, analysis needs have expanded in response to statutory 
requirements that demand the development of finer-scale modeling approaches to support more 
localized emission assessments. Examples include “hot-spot” analyses for transportation 
conformity and evaluation of the impact of specific changes in transportation systems (e.g., 
signalization and lane additions) on emissions. 

We have adopted most of the NRC's recommendations as our objectives in designing 
MOVES. The MOVES design objectives include applicability to a wide range of spatial and 
temporal scales, inclusion of all mobile sources and all pollutants, addressing model validation 
and the calculation of uncertainty, ease of updating the model, quality assurance, ability to 
interface with other models, and ease of use. 
These objectives have shaped our development plan for MOVES, as detailed in the rest of this 
paper. 

We have begun and will continue to develop MOVES with extensive coordination and 
outreach. A cross-agency team representing OTAQ, the Office of Air Quality Planning and 
Standards (OAQPS), the Office of Research and Development (ORD), and Regional EPA offices 
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produced an issue paper containing an initial proposal for the model in April 2001.2 Since then, 
we have coordinated with states, metropolitan planning organizations, the U.S. Department of 
Transportation, consultants, academics, and the “FACA Modeling Workgroup”, which is the 
Modeling Workgroup of the Mobile Source Technical Review Subcommittee (MSTRS) of the 
Clean Air Act Advisory Committee (CAAAC), a committee of experts from government, 
industry, and academia established under the Federal Advisory Committee Act (FACA). This 
continuing coordination will enable MOVES to benefit from advances in mobile source emission 
modeling and to meet the needs of the user and stakeholder community.  In addition, EPA has 
funded independent external peer review of the MOVES model via a contract with Southwest 
Research Institute (SwRI).  SwRI selected panelists from outside the EPA with expertise in 
transportation planning, emissions modeling, and air quality analysis.  The panel has provided 
comments on software design and emission data analysis plans (EPA, 2002a; EPA, 2002b).ii,iii 

This paper provides an overview of the MOVES development process with particular eye 
toward model quality (EPA, 2002).  First, the intended requirements and applications of the 
model are discussed.  Following, is a discussion of general model design considerations, its 
theory in emissions research, input data indicators of data quality and completeness, data 
acquisition and management in the Mobile Source Observation Database (MSOD), input quality 
indicators included in MOVES, and considerations of future data collection processes.  
 
Use Cases for MOVES 
 As the first part of model design and quality planning, a complete understanding of 
requirements for the model is needed. OTAQ prepared a list of “use cases,” a definition of the 
multiple ways in which mobile source emissions models are used for regulatory and research 
purposes.  With the help of a contractor (MCNC), we interviewed expert users for each use case.  
In addition to this formal interviewing process, we also consulted closely with researchers and 
users within EPA’s Office or Research and Development (ORD) and Office of Air Quality 
Planning and Standards (OAQPS), as well as with the FACA Modeling Workgroup, comprised 
of experts from industry, academia, government, and consulting firms.  From this assessment we 
developed a list of “essential use cases,” which explore, at a high level, how users need to or 
would like to use the model.  The result of this analysis was a list of fundamental use cases that 
have driven the MOVES design and quality assurance processes.  These use cases include 
national inventory development for EPA reports and regulation, local inventory development 
(e.g. State Implementation Plans), hot-spot and project level analysis (e.g. National 
Environmental Policy Act), interaction with air quality and travel models, policy evaluation, 
model analysis (e.g. uncertainty analysis), and model update and expansion.iv 
 As discussed below, these considerations are the first step in model design.  Crucially, 
these use cases also assist in defining the decisions that rely upon EPA’s mobile source 
emissions models.  These decisions are key to defining the requirements for MOVES quality 
assurance process.  As noted in the April 2002 peer review draft of Guidance on Quality 
Assurance Project Plans for Modeling, 

The intended use of the model is a determining factor in the level of QA needed because it 
is an indication of the seriousness of the potential consequences or impacts that might 
occur due to quality problems… [other] aspects of the QA effort can be established by 
considering the scope and magnitude of the project. 

The use case definitions also help in establishing the rigor of the QA process.  Mobile source 
emissions models play a central role in a wide variety of policy decisions and analyses, including 
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development of inventories for state implementation plans (SIPs), the National Emissions 
Inventory (NEI) used in the Trends report, conformity decisions that affect transportation 
funding, and project-level analyses undertaken through the National Environmental Policy Act.  
As a result, quality assurance planning for MOVES has been an integral part of model planning 
and development.  This process began by convening meetings of each of the MOVES teams, the 
Design Team, the Software Implementation Team, and the Mobile Emissions Analysis Team 
(MEAT) to determine which of the requirements outlined in the draft QAPP guidance for 
modeling were the responsibility of each model team.  Each of these teams has developed its 
own QA processes, which are now being assembled in a QAPP for the entire model. 

 

Model Design 
The use cases presented in Table 1 reflect overarching design considerations in the 

development of MOVES.  MOVES will be developed on an iterative basis, with most important 
use cases addressed first.   

The overall design of MOVES is modular, general purpose, “data-driven”, easy-to-use, 
and high-performance.  All geographic scales and processes are incorporated into a flexible 
framework of time spans and locations. The MOVES design provides several means of modeling 
the effects of emission controls. MOVES emission rates and activity information are derived 
from databases, easily updated as needed.  The first part of model description is to define what 
the model is intended to do.  Fundamentally, MOVES predicts emissions of all pollutants from 
multiple emission properties from all mobile sources addressed by MOBILE and NONROAD at 
a range of geographic scales for a range of durations.  In order to do this, MOVES applies the 
basic concept that for a given time, location, use type, and emission process, total emissions can 
be calculated in four steps: 1) calculate total activity, 2) determine activity distribution within 
source and operating mode bins, 3) calculate an emission rate for each process, source bin, and 
operating mode, and 4) aggregate emission rates across these modes. 

The term source is used to encompass both on-road vehicles and off-road equipment 
pieces. A source use type is a specific class of on-road vehicles or off-road equipment defined by 
unique activity patterns. Source bins are a subset of use types: subcategories that differentiate 
emission levels within a use type, covering categorizations such as weight class, fuel type, 
technology, standard, horsepower range, etc. Total activity is defined for a given use type as the 
product of the population of that use type and the per-source activity by time and location. We 
subdivide total activity into categories that differentiate emissions, known as operating mode 
bins; the intersection of source bins and operating mode bins results in a unique source and 
operating mode bin. By emission rates, we mean the most disaggregated rates the model 
produces internally by source and operating mode bins. By emission factors, we mean emission 
rates aggregated in various ways over source and/or operating mode bin and normalized by some 
activity basis, such as mass of pollutant per time or per mile. An emission process is a unique 
emissions pathway.  Generally speaking, emissions for a given emission process may be 
calculated by multiplying activity in each source and operating mode bin by the emission rates 
for that bin and aggregating upward.   

Fundamental to MOVES is the transition into a relational database framework for 
emissions estimation.  Built into the model is a series of databases, including a database 
containing emission rates for each bin.  This design allows for the emission rate databases to be 
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updated without needing to change the underlying code of the model. 

 

Model Theory 
For this paper, a full description of MOVES’ overall theory is unnecessary.  However, 

the process by which OTAQ decided upon a particular design and theoretical framework are 
important in illustrating the attention to quality concerns. 

In July 2001, OTAQ posted a RFQ to analyze real-time emissions data (1-Hz frequency) 
collected as part of an effort to develop portable on-board emissions measurement devices.  EPA 
awarded contracts to the University of California-Riverside, ENVIRON, and North Carolina 
State University.  The awardees were provided with on-board emissions, activity, and location 
data from several hours of data collected on 12 light-duty gasoline vehicles, heavy-duty diesel 
vehicles, and off-road diesel engines.  The awardees proposed analytical methods and submitted 
their predictions for a set of “emissions-blinded” data to EPA.  Proposals were evaluated 
according to a set of criteria, including accuracy of the method (verified at a “proof of concept” 
level), applicability to MOVES, extensibility to the range of vehicles and fuels likely in current 
and future technologies, usability of a wide range of data sources including laboratory and on-
board data, and ease of update as new data becomes available. 

On the basis of this “shootout,” NCSU was selected to receive a second contract to 
analyze a different set of emissions data, including continuous on-board, dynamometer, remote 
sensing device (RSD), and IM data.   The project evaluated methods for developing modal 
emission rates from these data sources for a data set of light duty gasoline vehicles.  NCSU was 
also charged with suggesting a methodology for quantifying both variability and uncertainty in 
emissions.  The methods were calibrated on a small data set and compared with a subset of other 
vehicles.  NCSU then developed a recommendation for developing modal emission rates based 
on vehicle specific power (VSP) for use in MOVES.v In this framework, total emissions could be 
calculated by multiplying estimated time spent in each VSP bin (activity) by the bin-specific 
emission rate and adding across all source and VSP bins.  NCSU proposed that variability in 
each bin could be characterized by fitting parametric distributions to the data within each bin.  
Uncertainty can be characterized using standard error propagation methods. 

As an alternative, EPA also has developed a plan to rely on a physical emissions model 
based in part on the Comprehensive Modal Emissions Model (CMEM) developed by UC-
Riverside.vi  PERE will provide emission rate estimates in source and operating mode bins in 
which insufficient measurement data is available, such as is the case for future vehicle 
technologies.  As proposed, the Physical Emission Rate Estimator (PERE) would 1) predict fuel 
rate based on vehicle power and engine friction; 2) predict of engine-out emissions from fuel 
rate; and 3) estimate aftertreatment effectiveness (e.g. catalytic efficiency) from fuel rate.  The 
relationships in these three steps would be based on parametric equations, and the model would 
produce binned emission rates by applying these equations at the midpoints of the appropriate 
operating mode bins.  Methods for characterizing uncertainty in PERE may include traditional 
error propagation. 
 
Quality Indicators for MOVES Input Data 
 Critical to MOVES is the availability of emissions data that is well documented and 
complete in its coverage of variables of interest.  As a result, in collection of all new data for 
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inclusion in MOVES, a series of “quality and completeness” criteria have been developed to 
categorize each source of data.  The preponderance of available data for MOVES has been 
gathered by organizations outside of OTAQ.  As a result, it is necessary to determine whether 
measurement projects were well documented, and whether the data produced contains 
information deemed necessary for MOVES in estimating emissions.  As part of MOVES data 
collection, data are assigned a letter grade of A, B, or C, one grade for availability of complete 
documentation of the data source and another grade for completeness of the data reported to 
EPA. 
 Documentation grades are assigned based on the availability of documentation of the data 
collection process from each data source.  For each test program, OTAQ wants copies of the 
statement of work, QA/QC plans, program reports summarizing the results of the test program 
and any changes made to the initial test plan, descriptions of instrumentation, and documentation 
of measurement uncertainty, including instrument minimum detection limits and reproducibility 
of data.  An “A” grade for documentation is assigned to the data when all desired documentation 
exists and is available upon request.  A “B” grade is assigned when all desired documentation 
can be derived from testing records and charts.  A “C” grade is assigned when some of the 
desired documentation is missing. 
 Data received completeness scores based on whether the test program in they were 
obtained recorded all variables determined to be critical needs for MOVES, including 
information on vehicle or engine characteristics, pollutants measured, fuel parameters, and 
descriptions of the testing conditions (e.g. soak time before engine start).  Data receive an “A” if 
all critical fields are measured and available, a “B” if all critical fields are either measured or can 
be derived from reported data, and a “C” if some critical fields were not measured and cannot be 
derived from reported data. 
 These documentation and completeness scores allow MOVES data to be categorized with 
regard to suitability for inclusion in the model.  The MOVES emission analysis team is currently 
developing acceptance criteria for how each grade of data will be treated (or not treated) within 
the model. 
 
Data Storage and Management 
 OTAQ is home to the Mobile Source Observation Database (MSOD), a centralized 
repository of any type of vehicle measurement data.vii  Developed since 1998, the MSOD is a 
relational database that is paired with a formal data acquisition and management process.  
MOVES will use MSOD as its storage facility for all emissions data. 
 MSOD is a relational database that has been implemented in Oracle to store emissions 
data on an aggregate (driving cycle average) basis or on a continuous basis, which makes it 
suitable for MOVES.  MSOD.  MSOD currently stores data on observations of in-use mobile 
sources, including general-purpose emission factor data collected since 1982 as well as data from 
special studies.  The general design allows storage of any type of mobile source observation, 
including emission rate data, activity, and fuel parameters.  MSOD uses a unique mobile source 
identification number for each vehicle and emission test that maps to specific contracts and 
statements of work.  Stored in the database are work assignments numbers, instrumentation used 
during measurement, and contract numbers.  Repeated observations of the same variable are 
stored to allow for repeatability to be assessed. 
 The MSOD quality assurance system is well established and broad.  Its data acquisition 
and management process allows for identification of new research needs (as identified by 
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management or MOVES data needs) and translation of these needs into short-term and long-term 
objectives and data needs.  These needs are incorporated into the annual and long-term 
information acquisition planning, which involves prioritizing needs, determining the appropriate 
technical approach, developing a data management plan for each project, negotiating resource 
allocation between needs, and a program plan summary and assignments.  The results of this 
planning process are used to design new studies and test programs, including production and 
review of statements-of-work and identification of data system needs.  This results in 
implementation and management of studies and test programs through work assignments, QC 
specifications for each project, and database needs.  Each study or test program is monitored for 
performance and cost-effectiveness.   

The long-term and annual planning results are also used to inform data acquisition 
through contracting for data.  Once data are obtained, the data management process consists of 
inspection of data with regard to conformance to work assignment specifications, data quality 
inspection, and processing and loading of emissions and non-emissions observations.  Tools used 
for this include data loading programs with automated QC functions.  After initial data 
management and loading, the data is delivered to the MSOD, where test programs are checked 
for completeness of vehicle descriptive information and tests results.  All sources associated with 
each work assignment are also checked for completeness before being delivered into the MSOD.  
Once within the MSOD, the data are promoted and distributed via web, compact disc, or FTP.  
User support is also undertaken, including training, answering questions, and update of support 
documentation.  A formal process and outcome evaluation of each test program is then 
undertaken. 
 The databases within MOVES are populated by data from the MSOD. 
 
Determination of Data Sufficiency within MOVES 
 MOVES is designed to be flexible enough to allow users to provide their own data or 
make their own judgments as to which sources of data need to be included.  For instance, some 
MOVES users may want to include continuous (1-Hz) emissions data collected from state 
inspection and maintenance (IM) programs, while others may wish to exclude these data if the 
data were collected in a location with vastly different meteorology and altitude.  Alternatively, a 
user may wish to provide their own emission rate data (subject to acceptability criteria).  
MOVES will provide the ability to determine whether such custom applications constitute an 
“acceptable” application of data.  This function will be carried out by the automated MOVES 
emission data-binning program, which will assign each point in a data set to a VSP bin within 
each source bin. 
 Within each VSP bin, the emission data binning program will calculate indices of data 
quality.  These indices are currently under development.  Several indices have been proposed, 
including ratio of standard error to the mean emission rate within each VSP bin and the 
proportion of within-VSP bin variance contributed by each vehicle.  MOVES will automatically 
flag data that does meet the specified criteria, for example, if 90% of the variance within one 
VSP bin is contributed by a single vehicle, the data binning program could produce a quality flag 
indicating caution in interpreting any calculations performed using that VSP bin. 
 An alternative, as discussed above, is to supplement emission rates from measured data 
with PERE, the physically-based emissions model.  Such a process is required for predicting 
emissions from future technology vehicles.  Furthermore, this possibility allows PERE to 
supplement existing emissions data in situations where emissions data is difficult to collect and 
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tends toward high variability (e.g. high-speed, high acceleration events).  Subject to 
quantification of the uncertainty in PERE, this approach offers the possibility of supplementing 
“real-world” data with “low quality” with modeled data with quantifiable variability and 
uncertainty.  In the context of the emission rate database for the model, PERE can be used to 
populate source or operating mode bins in the emission rate database for which data of 
insufficient quantity or quality exist. 
 
MOVES Data Needs Determination 
 As stated earlier, MOVES design and software implementation is an iterative process, 
with the highest-priority use cases addressed first.  Similarly, as MOVES becomes a finished 
model, data acquisition will become an iterative process with the model.  Specifically, 
quantitative sensitivity and uncertainty analysis will be undertaken to determine model 
parameters that make the greatest contribution to overall uncertainty.  This process will initially 
be undertaken primarily by using analytical propagation of error, but future versions of the 
model may allow for Monte Carlo methods to be implemented where the assumption of 
normality and sample size sufficiency are not fully met.  Model parameters that make the largest 
contribution to overall uncertainty will be assessed and assigned the greatest weight for data 
acquisition. 
 
MOVES Quality Assurance Project Plan 
 MOVES is the first OTAQ model to make formal use of a systematic planning 
framework.  At the time of this document’s publication, the first draft QAPP for MOVES is 
underway.  The QAPP will conform to the draft guidelines set forth in OEI’s guidance for 
QAPPs for models.  The QAPP will address, in a formal way, project organization and schedule, 
data quality objectives, staff training requirements, documentation and record-keeping plans, 
data acquisition needs, data management plans, hardware and software configuration, model 
assessment activities including sensitivity and uncertainty analysis, software quality assurance, 
including testing and benchmarking, peer review and management report plans, and data 
validation. 
 
Conclusion 
 MOVES is EPA’s next generation mobile source emissions model.  It has been designed 
to comply with the suggestions of the NRC panel that reviewed OTAQ’s overall modeling 
framework.  Its theoretical foundations, design, data acquisition and management processes are 
based on the most current understanding of mobile source emissions science, software design, 
programming, and database management.  MOVES design and emissions analysis plans have 
been subject to independent external peer review, in addition to stakeholder review through the 
FACA modeling workgroup. 
 MOVES is the most sophisticated and mature mobile source emissions model that OTAQ 
has ever developed.  The attention to quality planning throughout its development process are 
producing a model with a high level of utility to decision makers, credibility in the scientific 
community, and confidence to the model team that we are producing a superior model.  Further 
information about MOVES can be accessed at http://www.epa.gov/otaq/ngm.htm. 
 NHEERL QA Intranet Page at the MED Link. 
                                                 
i National Research Council. Modeling Mobile Source Emissions.  Washington: National Academy Press, 2000. 
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ii Environmental Protection Agency. (2002a) Draft design and implementation Plan for EPA’s Multi-Scale Motor 
Vehicle and Equipment Emission System (MOVES).  October 2002 peer review draft.  [Available at 
www.epa.gov/otaq/ngm.htm] 
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iv See Reference 3. 
v VSP can be defined by the following equation, adopted from Jose Jimenez at Massachusetts Institute of 
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vi Information and publications on the Comprehensive Modal Emissions Model are available at 
http://www.cert.ucr.edu/research/project.asp?project=89. 
vii Environmental Protection Agency.  (2000) Mobile Source Observation Data:  user guide and reference.  
Document EPA420-B-00-002. 
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Systematic Planning for the Residual Risk Program:  Adapting the Quality 
Planning Process to the Needs of the Participants 

 
Malcolm Bertoni and Kara Morgan 

 
 

The U.S. Environmental Protection Agency requires systematic planning for its 
programs that create or use environmental data.  The basic elements of systematic 
planning are set forth in the EPA Quality Manual (EPA Manual 5360 A1, May 2000).  
For many years, the Data Quality Objectives (DQO) process has been the recommended 
systematic planning methodology, particularly when the application involves decision 
making (i.e., a clear choice between two or more alternative actions).  In the past year, 
EPA has put forth a draft alternative systematic planning method in Guidance on 
Systematic Planning for Environmental Data Collection Using Performance and 
Acceptance Criteria (QA/G-4A), which addresses a broader range of applications using 
the same scientific principles upon which the DQO process is built.  Both the DQO 
process and the more recent generalization are structured planning methodologies that 
have well-defined steps, involving numerous stakeholders, which are designed to 
produce outputs that feed into a Quality Assurance Project Plan (another requirement of 
the EPA Quality System).  While these methods are sound and robust, the authors have 
experienced many situations where the participants in the planning process get confused 
about terminology and the purpose of various planning steps, and even question the 
value of the planning exercise.  We believe that most of these stumbling blocks can be 
avoided if the quality assurance representative adapts the presentation and 
implementation of systematic planning to the needs of the participants.  This paper 
describes an example of how we adapted the systematic planning process to the needs of 
the Residual Risk Program within EPA’s Office of Air Quality Planning and Standards. 
 
 The Residual Risk Program, which is authorized by Section 112(f) of the Clean 
Air Act, addresses the health and environmental risks due to emissions of hazardous air 
pollutants (HAPs) that remain after implementation of the Maximum Achievable Control 
Technology (MACT) standards.  Industries that emit HAPs are divided into over a 
hundred different source categories (such as dry cleaners, coke ovens, halogenated 
solvents, aerospace, etc.).  There is tremendous variety among the source categories in 
terms of the numbers and locations of emitting facilities, the amounts of annual 
emissions, the types of releases, the engineering controls that are feasible, and the 
economic impacts of further controls.  Moreover, there is great variety in the quantity 
and quality of data and other information available to estimate residual risks, evaluate 
potential controls costs, and estimate economic impacts.  Risk assessors, engineers, and 
economists work together to evaluate whether additional regulations are needed for a 
given source category, and they often must gather data from a patchwork of different 
sources.  Characterizing the representativeness and uncertainty of their resulting 
estimates is challenging under the best of circumstances, and they have been embarking 
on a program streamlining effort to accomplish their mission more efficiently.  Under 
these requirements and constraints, they recognized the need to adopt a systematic 
planning approach to improve their data collection.   
 
This paper describes the program-wide planning process that was conducted, and shows 
some of the resulting planning tools that are being used for specific source categories.  
We supported their planning efforts by first clarifying their current Residual Risk 
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decision process through an interdisciplinary program-wide planning workshop.  Then, 
we worked with the program team to develop a program-specific planning process that 
addressed all of the required elements of systematic planning, yet used specific steps and 
terminology that were more familiar and comfortable for the participants.  This 
program-specific planning process and associated planning tools will be used by source 
category teams that will do the analysis leading to decisions about whether or not to 
regulate given source categories.  The tools allow the teams to address 
representativeness and uncertainty using traditional (and more rigorous) quantitative 
methods as well as innovative qualitative methods.  By merging the quality planning 
steps with their existing planning processes, they were able to obtain agreement on 
issues that had been unresolved for years. 
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Practical Estimators of the PM2.5 Data Quality Objective Parameters 
 

Basil Coutant, Battelle 
 
 

Fine particulate matter, particulate matter of aerodynamic diameter 2.5 µm or less 
(PM2.5), is regularly sampled at more than 1,000 sites by state and local EPA agencies 
across the U.S. for compliance with the National Ambient Air Quality Standards 
(NAAQS).  The Data Quality Objectives (DQOs) for this data collection are generally 
based on the DQOs developed by the U.S. EPA in 1999 and revised in 2000.  The DQOs 
were established using a simulation model that has seven parameters:  sampling 
frequency, data completeness, precision, bias, seasonality ratio, natural variation, and 
autocorrelation.  The first four of these parameters are controllable through network 
operations management.  The last three are characteristics of the ambient conditions 
and, hence, are not directly controllable and must be estimated.  These same parameters 
will be required for the forthcoming coarse particulate standard. 
 
In support of these activities, the U.S. EPA has funded the creation of software tools that 
use the simulation model to develop decision performance curves (also called power 
curves).  However, to use the software, estimates of the ambient characteristics are 
required as inputs.  The goal here is to present practical methods for estimating the 
input parameters for these tools.  The algorithms are derived to establish their technical 
assumptions and are compared with the output from the simulation model used for the 
PM2.5 DQOs. 

 
 
1.0  INTRODUCTION 
The National Ambient Air Quality Standards (NAAQS) for fine particulate matter, PM2.5, has 
two components (see 40CFR50) based on data collected from three consecutive years.  The first 
component is that the average of the three annual mean concentrations is to be no more than 
15.0 µg/m3.  The second is that the mean of the 98th percentiles for each year is to be no more 
than 65 µg/m3.  A nationwide network of over 1,000 sites has been established to monitor PM2.5 
concentrations providing data for attainment/non-attainment decisions with respect to these two 
standards.  The sampling process is a fairly involved manual process.  As a result, for many 
areas, it is only practical to sample every sixth or every third day, and data completeness is an 
issue for many sites (see 2000 QA Report).  Hence, data quality and the quality of the 
attainment/non-attainment decisions made based on the data are being carefully monitored by the 
U.S. EPA (EPA). 
 
EPA uses the Data Quality Objective (DQO) process (see EPA’s guidance document QA/G-4).  
This process quantifies the data quality needs so that the subsequent decisions meet decision 
maker needs.  As a result of the application of that process, a software tool, DQO Companion, 
was created for EPA.  The tool allows the local agencies to tailor the DQO process to the local 
ambient behavior of PM2.5.  (See U.S. EPA’s DQO Companion, Version 1.0 User’s Guide.)  As 
the tool demonstrates, the local behavior can have a substantial effect on the quality of the 
attainment/non-attainment decision.  However, in order to use the tool, certain parameters need 
to be estimated from local data.  This paper describes fairly easy and robust methods of obtaining 
estimates of the seasonality ratio, population Coefficient of Variation (CV), and autocorrelation. 
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2.0  THE SIMULATION MODEL 
The simulation models both the truth and the sample values.  Truth is based on a sinusoidal curve 
with a period of one year with a vertical shift that is constrained to keep the curve strictly 
above 0.  This curve represents the long-term seasonal mean.  The idea is to mimic the 
oscillatory behavior associated with seasonal changes.  Simulations with different shaped curves 
have shown that the power curves are not sensitive to the explicit shape, but are sensitive to the 
extremes.  Hence, the curve is parameterized by a long-term annual mean (the vertical shift 
from 0) and the ratio of the minimum of the curve to the maximum of the curve.  Next, 
day-to-day deviations from the curve are applied multiplicatively.  These deviations are assumed 
to have a lognormal distribution with a mean given by the sine curve and a constant coefficient 
of variation (CV).  This population CV is assumed to be a property of the local conditions at a 
site.  The true deviations are allowed to be correlated on the log scale.  As with the CV, the 
magnitude of any correlation is assumed to be site-specific. 
 
The simulations then apply a multiplicative bias, random measurement error (independent, 
normally distributed with a constant measurement CV), a fixed sampling schedule of one sample 
every m days, and random missing data with a specific quarterly completeness.  Finally, the 
power curves plot the probability of observing a 3-year aggregate value greater than the standard 
versus the true 3-year aggregate value.  Note that the true 3-year aggregate value is the 
realization of a random process in this case, not the more usual long-term expected value.  The 
probabilities are based on simulating at least 5,000 3-year realizations of both truth and measured 
values. 
 
 
3.0  ESTIMATED SIMULATION PARAMETERS 
The subsections of Section 3 describe the parameters that control the truth in the simulations.  
The three parameters are the seasonality ratio, the population CV, and autocorrelation.  All the 
recommended procedures require at least one year of data.  It is assumed that national level or 
region level DQOs would be used for at least the first year.  The current network has been 
operational for three years, so there are ample data to obtain the initial estimates. 
 
Each of the recommended estimators has been tested against the simulation model with a 
long-term mean of approximately15.0 µg/m3.  Of the three estimators, the autocorrelation 
estimator is the most variable, and it is slightly biased high (probably due to the constraint that it 
be non-negative). 
 
3.1  Seasonality Ratio 
The ratio parameter is a measure of the degree of seasonality in the data.  In the model, it is the 
ratio of the high point to the low point on the sine curve.  The model assumes that the amplitude 
of the sine curve is proportional to the mean.  Hence, it is assumed that ambient concentrations 
will be proportionally reduced throughout the year.  This is felt to be approximately true for 
areas of concern but has not been investigated. 
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The estimator recommended is based on finding monthly mean concentrations.  The estimate is 
the ratio of the highest monthly mean divided by the lowest monthly mean.  Where more than a 
year of data are available, the data from each month are combined across years for a total of 
12 monthly means.  Bi-monthly means have been tested and, as expected, reduce the extremes.  
However, usually the difference is negligible. 
 

3.2  Population CV 
This parameter measures the amount of random, day-to-day variation of the true concentration 
about the sine curve.  The procedure for estimating this parameter is a bit more involved than the 
estimate for the seasonality ratio estimate.  Also, since it is a variance parameter, it is harder to 
estimate in that it requires more data to achieve a comparable level of precision.  The following 
does a reasonable job. 
 
Start with every 6th day measurements (deleting, if needed) and take the natural log of each.  
Every sixth day measurements are used to avoid the effects of autocorrelation.  The logarithm is 
used to match the model, namely that a log-normal distribution is used for generating the 
deviations from the sine curve.  Create a new sequence of numbers equal to the differences of 
successive pairs in the sequence of the logs.  Ignoring measurement error for the moment, these 
differences will be of the form: 
 

ln(Seasonal trend at day i+6) + ln(random deviation for day i+6) – 
[ln(Seasonal trend at day i) + ln(random deviation for day i)] 

 
= ln(Seasonal trend at day i+6) - ln(Seasonal trend at day i) + 

 ln(random deviation for day i+6) - ln(random deviation for day i) 
 

         ≈ ln(random deviation for day i+6) - ln(random deviation for day i). 
 
The measurement error should be less than 10 percent and, hence, much smaller than the random 
component of the day-to-day deviations, which is typically 50 percent or more. 
 
The next step is to remove every other term from the sequence generated above so that the terms 
are mutually independent.  Now, assume that the random deviations from the seasonal trend are 
generated from a log-normal distribution with a mean of 1 and a geometric variance of σ2.  Then, 
the variance of the terms of the sequence generated is 2σ2.  Hence, the geometric variance of the 
random deviations about the seasonal trend can be estimated by one-half the variance of the 
sequence generated above.  Or, equivalently, the CV of the deviations can be estimated by 

( )( )12exp 2 −S , where S is the standard deviation of the sequence generated above. 
 
3.3  Autocorrelation 
The final parameter describing the natural variation of the true concentrations is the 
autocorrelation of the deviations from the seasonal trend.  This is a measurement of the similarity 
between successive days.  Consider two sets of measurements.  First, suppose one set of 
measurements contains the measured PM2.5 concentration on each July 15th for the past 
five years.  The population CV is intended to capture how different these measurements are from 
each other.  On the other hand, suppose the second set of measurements have the PM2.5 
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concentrations for each day from July 15, 2002, to July 20, 2002.  These measurements may not 
be as spread out as the other values simply because they were taken closer together in time.  
Autocorrelation measures this effect.  A good way to think of autocorrelation is that it measures 
how quickly the local concentrations can change.  The value of the autocorrelation under 
consideration is between 0 and 1.  A value of 0 indicates that the local concentrations change 
very fast.  A value of 1 indicates that the local concentrations are constant. 
 
Estimating autocorrelation is even harder than estimating the population CV.  Without daily 
observations, it is recommended that 0 be used in the DQO tool because 0 is the most 
conservative value.  In fact, for most sites considered, any autocorrelation present is small, so 
0 is still a reasonable value to use in the DQO tool. 
 
Assume that daily measurements are available.  Then let S6 be the standard deviation computed 
in the section on population CV, based on differences of the logs from every 6th day 
measurements.  Let S1 be the corresponding standard deviation based on differences of the 
logarithms of the concentrations from successive daily measurements.  If S6 > S1, then there is 
evidence of some autocorrelation. 
 
The differences from the every sixth day measurements can be taken to be effectively 
independent since the correlation between these measurements should be the same as that of the 
daily measurements to the sixth power.  Hence, the variance of the quantity: 
 

ln(random deviation for day i+6) - ln(random deviation for day i) 
 
is 2σ2, where σ2 is the geometric variance of the random deviations about the seasonal trend as 
before.  However, under the assumption of correlation, the variance of the quantity: 
 

ln(random deviation for day i+1) - ln(random deviation for day i) 
 
is 2σ2 - 2ρσ2, where σ2 is the geometric variance of the random deviations about the seasonal 
trend.  Hence, ( ) 222 616 SSS −  is an estimate of the autocorrelation. 
 
Testing with the simulation model has shown that this estimate can be variable, as should be 
expected since it is an estimate of a variance parameter for a non-linear model.  Since it is better 
to underestimate this parameter (to make the results more conservative) the DQO tool manual 
suggests multiplying the estimate by 0.85. 
 
 
4.0  DISCUSSION 
The primary criterion for choosing the three estimators was that they be easy to apply, in that 
they could easily be calculated in a spread sheet.  The three estimators satisfy that criteria.  They 
also do a quite reasonable job when based on at least one year of data.  However, while the 
estimators were developed for site-specific estimates, they probably should not be applied to a 
site in isolation for DQO development.  DQOs are generally applied across a group of sites, 
usually no smaller than a reporting organization.  Hence, as was done for the national level 
DQOs, the range of site-specific parameter estimates should be considered.  In particular, upper 
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bounds are needed for the population CV and the seasonality ratio across all sites.  A lower 
bound on the autocorrelation produces the “worst case,” the most difficult case for measuring the 
annual mean and the 98th percentile.  These extremes should be used in the DQO tool to 
establish the measurement precision and bias levels that will meet decision maker needs. 
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Evaluation and Use of Secondary Data 
 

James T. Markwiese, Neptune and Company  
 
 

All scientific disciplines rely upon existing (secondary) data to design new studies, test 
hypotheses and to make decisions.  An understanding of secondary data quality is useful 
for these efforts.  For example, existing toxicological dose-response data are often used 
to determine levels of contaminants in environmental media that will require 
remediation.  Because any record can represent secondary data, a framework for 
addressing the existing data quality must be general yet comprehensive.  Secondary data 
will be evaluated according to representativeness and comparability and other 
applicable data quality indicators.  Guidelines are presented for collecting and 
evaluating the acceptability of secondary data. Specifically, a two-stage screening 
process is described and attendant data quality considerations are presented for each 
stage in the context of addressing project objectives.    

 
 
Introduction.  This presentation describes a transparent and objective means of identifying 
relevant information as well as selecting key data from that information to address a problem 
statement.  An ecological risk assessment example is used to illustrate this process.  Specifically, 
we are interested in defining a safe concentration of a contaminant in the environment; i.e., a 
concentration below which adverse effects are not expected. 
 
State the Problem.  The first step in any systematic information gathering effort is to clearly 
define the issue to be addressed (EPA 2000a).  This task corresponds to the first step in the Data 
Quality Objectives (DQO) process; i.e., state the problem (Figure 1).  A succinct and 
comprehensive statement of the issue facilitates the establishment of secondary data acceptance 
criteria suitable for the project’s objective.  These criteria are described in more detail in the 
screening step for identifying key data for addressing the project objective.   
 
For purposes of illustration, consider the problem stated as defining a no adverse effect 
concentration (NOEC) for cadmium in the environment using existing information.  A search 
based on this loosely defined objective (using search terms of cadmium, NOEC and 
environment) could generate a tremendous number of references.  The assessment of applicable 
information among this vast literature would not be straightforward.  Given the wealth of 
information potentially available to the environmental scientist, it is necessary to focus on only 
those secondary data that directly pertain to the problem statement.   
 
A more specific objective, e.g., defining a concentration of cadmium in soil that is associated 
with no observed adverse effects in plants over chronic exposure, would narrow the number of 
references.  A clear statement of the issue allows for an evaluation of whether the secondary data 
are representative of project needs.  Representativeness is defined as, “the measure of the degree 
to which data accurately and precisely represent a characteristic of a population, parameter 
variations at a sampling point, a process condition, or an environmental condition” (ANSI/ASQC 
1994).  This definition captures multiple scales of information.  In the example of cadmium 
toxicity to plants, data users are in a much better position to focus on representative information 
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with a better-defined problem statement.  For example, an article entitled, “cadmium toxicity to 
wheat” is worthy of further scrutiny whereas an article describing the role of cadmium exposure 
in fish gill lesions would be eliminated from consideration.   
 

 
 

Figure 1.  A process for collecting and analyzing secondary data  
to address the problem statement 

 
Information Survey.  Upon establishing the problem statement (Figure 1), a survey can be 
structured to capture the maximum amount of pertinent information (Fink 1998).  It is important 
to explicitly list the rationale for information search parameters (WHO 2000).  This helps 
safeguard against reviewer biases influencing the data set to be critiqued because reviewers may 
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consciously or unconsciously include information that favor their own biases while ignoring that 
which does not (Slavin 1995). 
 
The sources of information consulted will depend on the study objective and could include 
published literature (both in peer-reviewed journals and so-called grey literature); relevant 
databases; and, predictions from models.  A comprehensive assessment of available data helps 
avoid biases.  For example, sole reliance on published literature may result in an overstatement 
of effects of a treatment because it is more difficult to publish studies showing no effects (Slavin 
1995).  Depending on the importance and scope of your project, one would set up a more or less 
elaborate review.  This “graded approach” provides flexibility in that the ultimate rigor in 
evaluating data is dictated by the intended use of the data (EPA 2000a) 
 
Identification of Key Data.  The information survey designed to address the problem statement 
will likely result in a considerable amount of information.  To most efficiently sieve through this 
material, it is recommended that a two-stage screening procedure be employed (Fink 1998, EPA 
1999, EPA 2000b, Fennel 2002).  A priori criteria are established to evaluate data quality in 
these screening stages.  Initially, the data are evaluated according to whether minimum 
requirements, such as representativeness and comparability, are sufficient to directly address the 
project objective.  For example, EPA’s High Production Volume Challenge Program requires 
information on the route and type of stressor exposure before data sets can be further evaluated 
for ecotoxicity and human health effect endpoints (EPA 1999).  Considering the example 
problem statement, only cadmium-plant toxicity data using soil as an exposure pathway would 
be suitable for our purposes.  Similarly, EPA’s Ecological Soil Screening Levels (Eco-SSLs) 
process requires meeting eleven literature-acceptance criteria to advance to the next stage of data 
abstraction (EPA 2000c).  Under the Eco-SSL criterion of toxicant, only data with adverse 
effects caused by a single stressor can advance (with multiple stressors, it is difficult to attribute 
causality of observed adverse effects, such as mortality, to any one stressor). 
 
Studies or data meeting minimum requirements proceed to a second stage (Fink 1998, EPA 
1999, EPA 2000d, Fennel 2002).  This is referred to as the methodological screen (Figure 2).  
The methodological screen more specifically addresses issues of data adequacy.  For data quality 
categories, subject matter experts quantitatively score data.  Many authors have posited such 
categories, including reliability, validity and accuracy (Fink 1998); reliability, relevance and 
adequacy (Klimisch et al. 1997); and, soundness, applicability and utility, clarity and 
completeness uncertainty and variability, evaluation and review (EPA 2002).   
 
As illustrated by these categories, data quality characteristics must be comprehensive enough to 
apply to the many potential sources of information available to an investigator (consider the 
inherent differences among monitoring, survey and experimental data).  By nature of this 
inclusiveness, however, the categories are necessarily broad.  Subject matter experts develop 
more specific criteria from general categories.  For purposes of illustration, data quality 
assessment factors proposed by the Office of Environmental Information (EPA 2002) are 
developed into checklist examples to address the objective of defining a concentration of 
cadmium in soil that is protective of plants over chronic exposures (Figure 2).  
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Figure 2.  Input from the practical screen is quantitatively ranked in the methodological screen to identify  

key data from the information collected.  EPA’s Office of Environmental Information  
data assessment factors (EPA 2002) are used as example data quality categories.
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Checklists are used to quantitatively rank data (EPA 2000d).  Considering the Eco-SSL protocol, 
the second stage screen employs nine criteria to assess the applicability of data for deriving 
toxicity thresholds and provides a set of rules for extracting and reporting the most appropriate 
data.  For each criterion, scoring is based on a three-point scale: 0, 1 or 2, with 2 being the 
highest score indicating complete agreement with the criterion.   
 
In the criterion to determine adequacy of test duration, for example, the data receive a score of 
“2” if chronic exposures or life-cycle phase studies were used, a score of “1” if acute tests were 
used and a score of “0” if very short-term exposures were used.  The scores for each criterion are 
recorded and summed to generate a total score for each data set.  Key data can be quantitatively 
defined according to an acceptance threshold based on scoring results (e.g., 80% of maximum 
score).  This establishment of an acceptability threshold for decisions based on secondary data is 
defensible in that justification is provided for selecting the data best suited to address the project 
objective. 
 
Decision Making Based on Key Data.  Consider again the project objective of defining a 
concentration of cadmium in soil that is protective of plants over chronic exposure.  To address 
such an objective, governmental organizations like Oak Ridge National Laboratory (Efroymson 
et al. 1997) and Los Alamos National Laboratory (LANL 2003) have typically based toxicity 
thresholds on the data from the best available or critical study.  In contrast, the recent Superfund 
guidance for ecological soil screening levels (EPA 2000b) uses several of the highest-scoring 
data sets to define safe levels of chemicals in the environment. The latter process maximizes the 
use of the available data for deriving soil ecological screening levels.   
 
Regardless of the decision-making process to define “safe” levels of chemicals in the 
environment, the approach described herein provides for a transparent and objective means of 
identifying relevant information as well as identifying key data from that information.  Basically, 
this approach illustrates a means of employing defensible data in decision making (Figure 1).  
Once the review is completed and the data are ranked, the scientific investigator is in a position 
to determine whether the data are adequate to address the problem statement or whether new data 
need to be collected.   
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An Information Quality Life Cycle Model:  Extending the Reach of Quality 
Management to Secondary Users of Data 

 
Malcolm Bertoni, Ian Beaty, Kara Morgan, Cynthia Salmons, Robert S. Wright 

 
 

The U.S. Environmental Protection Agency’s quality system has employed a data quality 
life cycle perspective for many years.  Planning, implementation, and assessment are the 
three main stages in the data quality life cycle, which form the foundation upon which 
numerous quality procedures and tools are built.  Until recent years, the EPA quality 
system had applied this life cycle framework primarily to the generation of new 
environmental measurement data.   However, for many reasons, the focus of the EPA 
quality system has been expanding beyond measurement data to include a variety of 
other sources, such as modeling results, scientific literature, historical databases, and 
surveys, to name a few.  Moreover, the explosion of information technology and 
emergence of the world wide web has made data and information widely available for 
secondary uses that may not have been contemplated by those who originally created the 
data. 
 
Over the past year, EPA and other federal agencies and departments have addressed 
concerns about information quality through the development of guidelines mandated by 
the U.S. Office of Management and Budget.  Some of the concepts and terminology 
introduced by OMB are different from what EPA’s quality community has developed 
over the past 30 years.  A question that environmental quality assurance practitioners 
may rightly ask is, “How do these information quality guidelines relate to our 
traditional data quality assurance program?” 
 
Information quality encompasses the Agency’s previous data quality paradigm and 
extends it to address a more comprehensive view of the “intended use” of data.  Just as 
information can be viewed as “data in context,” information quality can be viewed as 
encompassing yet going beyond traditional data quality indicators (accuracy, 
completeness, etc.) to include presentation format, timeliness, authenticity, and other 
quality characteristics that affect how well the information supports a particular need at 
a required place and time.  
 
This paper presents an information quality life cycle model that illustrates how the 
traditional planning, implementation, and assessment steps of the data quality life cycle 
can be extended to address information production, storage, and distribution.  Because 
the model shows how data and information are stored and reused, it helps identify how 
secondary users of existing data fit into the quality system.  The model represents a 
synthesis of several information quality perspectives from the leading researchers and 
authors in that field, as well as several EPA sources.  The model attempts to bridge the 
terminology gap between the information technology community and the environmental 
science and policy community.  The main elements of the life cycle model are described, 
and several examples are developed to explain how the model can be used to improve 
quality planning and assessment. 

 
 



EPA 22nd Annual National Conference on Managing Environmental Quality Systems                                                                                              1 

A Win-Win-Win Partnership for Training Environmental Statisticians - 
A Panel Discussion 

 
Dr. Kimberly Weems and Bill Hunt from  NC State University; Dr. Nagambal Shah and Dr. 

Monica Stephens, Spelman College; Michael Crotty, NCSU graduate student; Barry 
Nussbaum and Cary Roberts, U.S. EPA; David Mintz,  U.S. EPA; Steve Few, North Carolina 

Department of Environment and Natural Resources; Van Shrieves, U.S. EPA 
 
 

How could a win-win-win strategy be used to train young people in environmental 
statistics, simultaneously analyze environmental data for Federal, State and local 
agencies and increase the number of undergraduate students going on for advanced 
degrees in statistics?  Two courses have been developed to train undergraduate students 
in environmental statistics and provide them with a consulting experience.  Bill Hunt, 
Visiting Senior Lecturer in the Department of Statistics at North Carolina State 
University, developed the courses.  He has over 35 years experience in working on the 
analysis of environmental data and using important results to make national air pollution 
policy decisions.   He has been active in the ASA and served as chair of the 
Environmental Section.  During his 35 year career with the USEPA, he has tried on 
numerous occasions to increase the analysis of environmental data.  Many efforts were 
made to encourage the hiring of statisticians and data analysts to analyze environmental 
data at the Federal, State and local levels, but all of these efforts were met with very 
limited success.  The government continues to collect data, which largely go unanalyzed.   
 
The environmental courses developed at NC State University are intended to make a dent 
in this problem and reinvigorate the relationship between universities and colleges and 
environmental agencies. Along with his colleague, Dr. Kimberly Weems, they will be 
working with Dr. Nagambal Shah and Dr. Monica Stevens of Spelman College and Mr. 
Van Shrieves of EPA Region 4 to reproduce this program at Spelman College.  Spelman 
College will work with the U. S. Environmental Protection Agency Region 4 Office in 
Atlanta, GA and the Georgia Department of Natural Resources.  This collaborative effort 
will demonstrate that their approach can be used at universities and colleges with an 
undergraduate statistics program and at those without, as long as there are some courses 
in statistics.   
 
The objectives of the environmental statistics courses are: (1) to provide a consulting 
opportunity for the students with Federal, State or local agencies; (2) focus on the 
application of the student’s technical skills to a real problem; (3) have the students gain 
consulting experience; and (4) develop their oral and written communication skills.  The 
students learn how to prepare a final report, brief clients at the client’s office, and 
present poster papers at technical conferences and write papers for publication.  
Students have done work for eight clients: (1) the Southern Oxidant Study at North 
Carolina State University (NCSU); (2) the U. S. Environmental Protection Agency’s 
(USEPA) National Exposure Research Laboratory; (3) the USEPA’s Office of Air 
Quality Planning and Standards; (4) the North Carolina Department of Environment and 
Natural Resources (NCDENR); (5) the Forsyth County Environmental Affairs 
Department; (6) the U. S. Department of State;  (7) the USEPA’s Office of Environmental 
Information in Washington, DC ; (8) Environment Canada; (9) Texas Commission on 
Environmental Quality; and the (10) University of Texas.   
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Bill Hunt and Kimberly Weems will provide an overview of the course.  They will 
comment on the impact the course has had on the university - more students pursuing 
graduate study, the faculty develops new contacts with environmental agencies, and the 
placement of their students in rewarding careers.  The USEPA panelists can discuss the 
usefulness of having their data analyzed, the impact of student analyses on environmental 
policy decisions, and their experience in hiring the students for permanent or part time 
work.  Mr. Van Shrieves will talk about implementing the course in Region 4.   Dr. 
Nagambal Shah and/or Dr. Monica Stephens will also comment on the implementation of 
the environmental statistics program in Region 4 from the perspective of Spelman 
College.  Mr. Steve Few can present the State viewpoint to complement the USEPA 
viewpoint.  Michael Crotty can discuss the course from a student’s perspective - gaining 
experience in doing research, consulting, writing reports, giving briefings, presenting 
papers, etc and how the course helped him in his career choices. 
 
The panel will discuss the question: Can pair universities/colleges (Statistics 
Departments and Math Departments with statistics courses) be paired with 
environmental agencies across the United States and make this program work.  The 
audience will be invited to ask questions.   
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